
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-2001-210663
ICASE Report No. 2001-5

Saturation: An Efficient Iteration Strategy for
Symbolic State-space Generation

Gianfranco Ciardo
The College of William & Mary, Williamsburg, Virginia

Gerald Lüttgen
The University of Sheffield, Sheffield, United Kingdom

Radu Siminiceanu
The College of William & Mary, Williamsburg, Virginia

ICASE
NASA Langley Research Center
Hampton, Virginia
Operated by Universities Space Research Association

February 2001

Prepared for Langley Research Center
under Contract NAS1-97046

SATURATION: AN EFFICIENT ITERATION STRATEGY FOR

SYMBOLIC STATE{SPACE GENERATION�

GIANFRANCO CIARDOy, GERALD L�UTTGENz, AND RADU SIMINICEANUy

Abstract. This paper presents a novel algorithm for generating state spaces of asynchronous systems

using Multi{valued Decision Diagrams. In contrast to related work, the next{state function of a system

is not encoded as a single Boolean function, but as cross{products of integer functions. This permits the

application of various iteration strategies to build a system's state space. In particular, this paper introduces

a new elegant strategy, called saturation, and implements it in the tool SMART. On top of usually performing

several orders of magnitude faster than existing BDD{based state{space generators, the algorithm's required

peak memory is often close to the �nal memory needed for storing the overall state spaces.

Key words. iteration strategy, multi{valued decision diagrams, saturation, state{space generation

Subject classi�cation. Computer Science

1. Introduction. State{space generation is one of the most fundamental challenges for many formal

veri�cation tools, such as model checkers [16]. The high complexity of today's digital systems requires

constructing and storing huge state spaces in the relatively small memory of a workstation. One research

direction widely pursued in the literature suggests the use of decision diagrams, usually Binary Decision

Diagrams [8] (BDDs), as a data structure for implicitly representing large sets of states in a compact fashion.

This proved to be very successful for the veri�cation of synchronous digital circuits, as it increased the

manageable sizes of state spaces from about 106 states, with traditional explicit state{space generation

techniques [18, 19], to about 1020 states [10]. Unfortunately, symbolic techniques are known not to work

well for asynchronous systems, such as communication protocols, which su�er from state{space explosion.

The latter problem was addressed in previous work by the authors in the context of state{space gen-

eration using Multi{valued Decision Diagrams [25] (MDDs), which exploited the fact that, in event{based

asynchronous systems, each event updates just a few components of a system's state vector [11]. Hence, �ring

an event requires only the application of local next{state functions and the local manipulation of MDDs.

This is in contrast to classic BDD{based techniques which construct state spaces by iteratively applying a

single, global next{state function which is itself encoded as a BDD [28]. Additionally, in most concurrency

frameworks including Petri nets [31] and process algebras [5], next{state functions satisfy a product form

allowing each component of the state vector to be updated somewhat independently of the others. Experi-

mental results implementing these ideas of locality showed signi�cant improvements in speed and memory

consumption when compared to other state{space generators [30].

�This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1{97046

while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681{2199, USA. G. Ciardo

and R. Siminiceanu were also partially supported by NASA Grant No. NAG{1{2168.
yDepartment of Computer Science, P.O. Box 8795, College of William and Mary, Williamsburg, VA 23187{8795, USA, email:

fciardo, radug@cs.wm.edu.
zDepartment of Computer Science, The University of She�eld, 211 Portobello Street, She�eld S1 4DP, U.K., email:

g.luettgen@dcs.shef.ac.uk.

1

In this paper we take our previous approach a signi�cant step further by observing that the reachable

state space of a system can be built by �ring the system's events in any order, as long as every event is

considered often enough [21]. We exploit this freedom by proposing a novel strategy which exhaustively �res

all events a�ecting a given MDD node, thereby bringing it to its �nal saturated shape. Moreover, nodes are

considered in a depth{�rst fashion, i.e., when a node is processed, all its descendants are already saturated.

The resulting state{space generation algorithm is not only concise, but also allows for an elegant proof

of correctness. Compared to our previous work [11], saturation eliminates much administration overhead,

reduces the average number of �ring events, and enables a simpler and more e�cient cache management.

We implemented the new algorithm in the tool SMART [12], and experimental studies indicate that

it performs on average about one order of magnitude faster than our old algorithm and several orders of

magnitude faster than other existing state{space generators [11]. Even more important and in contrast to

related work, the peak memory requirements of our algorithm are often close to its �nal memory requirements.

In the case of the well{known dining philosophers' problem, we are able to construct the associated state

space of about 10627 states, for 1000 philosophers, in under 1 second on a 800 MHz Pentium III PC using only

390KB of memory. Our results imply that future state{based veri�cation tools will be able to handle much

larger asynchronous systems than is currently possible and will also provide faster feedback to engineers.

The remainder of this paper is organized as follows. The next section introduces our formal framework

and notation, including MDDs. Section 3 then presents our idea of node saturation as well as our novel state{

space generation algorithm. Some implementation details are discussed in Section 4, and our algorithm is

evaluated in Section 5 by applying it to a suite of asynchronous system models. Finally, related work is

surveyed in Section 6, while Section 7 contains our conclusions and directions for future work.

2. MDDs for Encoding Structured State Spaces. A discrete{state system model expressed in a

high{level formalism must specify three objects: (i) bS , the set of potential states describing the \type" of

states; (ii) s 2 bS , the initial state of the system; and (iii) N : bS �! 2
bS , the next{state function, describing

which states can be reached from a given state in a single system step. In many cases, such as Petri nets and

process algebras, a model expresses this function as a union N =
S
e2E Ne, where E is a �nite set of events

and Ne is the next{state function associated with event e. We say that Ne(s) is the set of states the system

can enter when event e occurs, or �res, in state s. Moreover, event e is called disabled in s if Ne(s) = ;;

otherwise, it is enabled.

The reachable state space S � bS of the model under consideration is the smallest set containing the

initial system state s and being closed with respect to N , i.e., S = fsg [N (s) [N (N (s)) [� � � = N �(s),

where \�" denotes re
exive and transitive closure. When N is composed of several functions Ne, for e 2 E ,

we can iterate these functions in any order, as long as we consider each Ne often enough. This results in

\chaotic" �xed point iterations, which are known to yield the desired �xed point, i.e., the reachable state

space S [21]. In other words, i 2 S if and only if it can be reached from s through zero or more event �rings.

In this paper we assume that S is �nite; however, for most practical asynchronous systems, the size of S is

enormous due to the state{space explosion problem.

2.1. Multi{valued Decision Diagrams. One way to cope with this problem is to use e�cient data

structures to encode S. This is usually possible when the system has some structure. We consider the

common case in asynchronous system design, where a system model is composed of K submodels, for some

K 2 N, so that a global system state is aK{tuple (iK ; : : : ; i1), where ik is the local state for submodel k. (We

2

S4
= f0; 1; 2; 3g

S3
= f0; 1; 2g

S2
= f0; 1g

S1
= f0; 1; 2g

0

10

1 2 3

0 1 2 0 1 2

0 1 0 1 0 1

0 1 20 1 2 0 1 2

0 1 2

0 1

0

0

0 1

1

S = f1000; 1010; 1100;
1110; 1210; 2000;

2010; 2100; 2110;

2210; 3010; 3110;

3200; 3201; 3202;

3210; 3211; 3212g

Fig. 2.1. An example MDD and the state space S encoded by it.

use superscripts for submodel indexes |not for exponentiation| and subscripts for event indexes.) Thus,bS = SK � � � � �S1, with each local state space Sk having some �nite size nk. In Petri nets, for example, the

set of places can be partitioned into K subsets, and the marking can be written as the composition of the K

corresponding submarkings. When identifying Sk with the initial integer interval f0; : : : ; nk�1g, for each

K � k � 1, one can encode S � bS via a (quasi{reduced ordered) MDD, i.e., a directed acyclic graph where:

� Nodes are organized into K +1 levels. We write hk:pi to denote a generic node, where k is the level

and p is a unique index for that level. Level K contains only a single non{terminal node hK:ri, the

root, whereas levels K�1 through 1 contain one or more non{terminal nodes. Level 0 consists of

two terminal nodes, h0:0i and h0:1i. (We use boldface for indexes 0 or 1 because they have a special

meaning, as we will explain later.)

� A non{terminal node hk:pi has nk arcs pointing to nodes at level k�1. If the ith arc, for i 2 Sk,

is to node hk�1:qi, we write hk:pi[i] = q. Unlike in the original BDD setting [8, 9], we allow for

redundant nodes, having all arcs pointing to the same node. This will be convenient for our purposes,

as eliminating such nodes would lead to arcs spanning multiple levels.

� A non{terminal node cannot duplicate (i.e., have the same pattern of arcs as) another node at the

same level.

Given a node hk:pi, we can recursively de�ne the node reached from it through any integer sequence
 =df

(ik; ik�1; � � � ; il) 2 Sk � Sk�1 � � � � � Sl of length k � l + 1, for K � k � l � 1, as

node(hk:pi;
) =

(
hk:pi if
 = (), the empty sequence

node(hk�1:qi; �) if
 = (ik; �) and hk:pi[ik] = q.

The substates encoded by p or reaching p are then, respectively,

B(hk:pi) = f� 2 Sk � � � � � S1 : node(hk:pi; �) = h0:1ig \below" hk:pi ;

A(hk:pi) = f� 2 SK � � � � � Sk+1 : node(hK:ri; �) = hk:pig \above" hk:pi .

Thus, B(hk:pi) contains the substates that, pre�xed by a substate in A(hk:pi), form a (global) state encoded

by the MDD. We reserve the indexes 0 and 1 at each level k to encode the sets ; and Sk�� � ��S1, respectively.

In particular, B(h0:0i) = ; and B(h0:1i) = f()g. Figure 2.1 shows a four{level example MDD and the set S

encoded by it; only the highlighted nodes are actually stored.

Many algorithms for generating the state space S using BDDs have been proposed [28], and adapting

them to MDDs is straightforward. However, a key di�erence in our new approach is that we do not encode

the next{state function as an MDD over 2K variables, recording the K state components before and after

a system step. Instead, we explicitly and e�ciently update MDD nodes directly, adding the new states

reached through one step of the global next{state function when �ring a given event. For asynchronous

system models, this function is often expressible as the cross{product of local next{state functions.

3

2.2. Product{form Behavior. An asynchronous system model exhibits such behavior if, for each

event e, its next{state function Ne can be written as a cross{product of K local functions, i.e., Ne =

NK
e �� � ��N 1

e where N k
e : Sk �! 2S

k

, for all K � k � 1. This requirement is quite natural for two reasons.

First, many modeling formalisms satisfy it, e.g., any Petri net model conforms to this behavior for any

partition of its places. Second, if a given model does not respect the product{form behavior, we can always

coarsen K or re�ne E so that it does. As an example, consider a model partitioned into four submodels,

where Ne = N 4
e �N

3;2
e �N 1

e , but N
3;2 : S3�S2 �! 2S

3�S2 cannot be expressed as a product N 3
e �N

2
e . We

can achieve the product{form requirement by simply partitioning the model into three, not four, submodels.

Alternatively, we may substitute event e with \subevents" satisfying the product form. This is possible

since, in the worst case, we can de�ne a subevent ei;j , for each i = (i3; i2) and j = (j3; j2) 2 N 3;2
e (i),

with Nei;j (i
3) = fj3g and Nei;j (i

2) = fj2g. Of course, carrying this argument too far leads to explicit

representations, where K = 1 or where every state{to{state transition corresponds to a di�erent event.

However, this did not happen in the numerous asynchronous systems we considered in our studies.

Finally, we introduce some notational conventions. We say that event e depends on level k, if the local

state at level k does a�ect the enabling of e or if it is changed by the �ring of e. Let First(e) and Last(e) be

the �rst and last levels on which event e depends. Events e such that First(e) = Last(e) = k are said to be

local events and can be merged into a singlemacro{event �k without violating the product{form requirement,

since one can write N�k = NK
�k
� � � � �N 1

�k
where N k

�k
=
S
fe:First(e)=Last(e)=kgN

k
e , while N

l
�k
(il) = filg for

l 6= k and il 2 Sl. The set fe 2 E : First(e) = kg of events \starting" at level k is denoted by Ek. We also

extend Ne to substates instead of full states: Ne((i
k; : : : ; il)) = N k

e (i
k)� � � � �N l

e(i
l), for K � k � l � 1; to

sets of states: Ne(X) =
S
i2X Ne(i), for X � Sk � � � � � Sl; and to sets of events: NF (X) =

S
e2F Ne(X),

for F � E . In particular, we write N�k for Nfe:First(e)�kg.

3. A Novel Algorithm Employing Node Saturation. Recall that we describe the behavior of an

event{based asynchronous system using a product{form next{state function for each event. The system's

state space may then be built by iterating these functions in any order, as long as each is considered often

enough [21], i.e., until no additional reachable states are found. We refer to a speci�c order of iteration as

iteration strategy. Clearly, the choice of strategy in
uences the e�ciency of state{space generation. In our

previous work [11] we employed a naive strategy that cycled through MDDs level{by{level and �red, at each

level k, all events e with First(e) = k.

As main contribution of this paper, we present a novel iteration strategy, called saturation, which not

only simpli�es our previous algorithm, but also signi�cantly improves its time and space e�ciency. The key

idea is to �re events node{wise and exhaustively, instead of level{wise and just once per iteration. Formally,

we say that an MDD node hk:pi is saturated if it encodes a set of states that is a �xed point with respect to

the �ring of any event at its level or at a lower level, i.e., if B(hk:pi) = N �
�k(B(hk:pi)) holds; it can easily be

shown by contradiction that any node below node hk:pi must be saturated, too. It should be noted that the

routine for �ring some event, in order to reveal and add globally reachable states to the MDD{representation

of the state space under construction, is similar to [11]. In particular, MDDs are only locally manipulated

with respect to the levels on which the �red event depends, and, due to the product{form behavior, these

manipulations can be carried out very e�ciently. We do not further comment on these issues here, but

concentrate solely on the new idea of node saturation and its implications.

Just as in traditional symbolic state{space generation algorithms, we use a unique table, to detect dupli-

cate nodes, and operation caches, in particular a union cache and a �ring cache, to speed{up computation.

4

However, our approach is distinguished by the fact that only saturated nodes are checked in the unique

table or referenced in the caches. Given the MDD encoding of the initial state s, we saturate its nodes

bottom{up. This improves both memory and execution{time e�ciency for generating state spaces because

of the following reasons. First, our saturation order ensures that the �ring of an event a�ecting only the

current and possibly lower levels adds as many new states as possible. Then, since each node in the �nal

encoding of S is saturated, any node we insert in the unique table has at least a chance of being still part

of the �nal MDD, while any unsaturated node inserted by a traditional symbolic approach is guaranteed to

be eventually deleted and replaced with another node encoding a larger subset of states. Finally, once we

saturate a node at level k, we never need to �re any event e 2 Ek in it again, while, in classic symbolic

approaches, N is applied to the entire MDD at every iteration.

In the pseudo{code of our new algorithm implementing node saturation, which is shown in Figure 3.1,

we use the data types evnt (model event), lcl (local state), lvl (level), and idx (node index within a level);

in practice these are simply integers in appropriate ranges. We also assume the following dynamically{sized

global hash tables: (a) UT [k], for K�k�1, the unique table for nodes at level k, to retrieve p given the key

hk:pi[0]; : : : ; hk:pi[nk�1]; (b) UC [k], for K>k�1, the union cache for nodes at level k, to retrieve s given

nodes p and q, where B(hk:si) = B(hk:pi)[B(hk:qi); and (c) FC [k], for K>k�1, the �ring cache for nodes

at level k, to retrieve s given node p and event e, where First(e) > k and B(hk:si) = N �
�k(Ne(B(hk:pi))).

Furthermore, we use K dynamically{sized arrays to store nodes, so that hk:pi can be e�ciently retrieved as

the pth entry of the kth array. The call Generate(s) creates the MDD encoding the initial state, saturating

each MDD node as soon as it creates it, in a bottom{up fashion. Hence, when it calls Saturate(k; r), all

children of hk:ri are already saturated. Thus, our focus for the algorithm's correctness is on the correctness

of Saturate and the routine RecFire invoked by it.

Theorem 3.1 (Correctness). Consider a node hk:pi with K � k � 1 and saturated children. Moreover,

(a) let hl:qi be one of its children, satisfying q 6= 0 and l = k�1; (b) let U stand for B(hl:qi) before the

call RecFire(e; l; q), for some event e with l < First(e), and let V represent B(hl:fi), where f is the value

returned by this call; and (c) let X and Y denote B(hk:pi) before and after calling Saturate(k; p), respectively.

Then, (i) V = N �
�l(Ne(U)) and (ii) Y = N �

�k(X).

By choosing, for node hk:pi, the root hK:ri of the MDD representing the initial system state s, we obtain

Y = N �
�K(B(hK:ri)) = N �

�K(fsg) = S, as desired.

Proof. To prove both statements we employ a simultaneous induction on k. For the induction base, k = 1,

we have: (i) The only possible call RecFire(e; 0;1) immediately returns 1 because of the test on l (cf. line 1).

Then, U = V = f()g and f()g = N �
�0(Ne(f()g)). (ii) The call Saturate(1; p) repeatedly explores �1, the only

event in E1, in every local state i for which N 1
�1
(i) 6= ; and for which h1:pi[i] is either 1 at the beginning of

the \while L 6= ;" loop, or has been modi�ed (cf. line 12) from 0 to 1, which is the value of f , hence u, since

the call RecFire(e; 0;1) returns 1. The iteration stops when further attempts to �re �1 do not add any new

state to B(h1:pi). At this point, Y = N �
�1(X) = N �

�1(X).

For the induction step we assume that the calls to Saturate(k�1; �) as well as to RecFire(e; l�1; �) work

correctly. Recall that l = k � 1.

(i) Unlike Saturate (cf. line 14), RecFire does not add further local states to L, since it modi�es \in{

place" the new node hl:si, and not the node hl:qi describing the states from where the �ring is

explored. The call RecFire(e; l; q) can be resolved in three ways. If l < Last(e), then the returned

5

Generate(in s:array[1::K] of lcl):idx

Build an MDD rooted at hK:ri encoding N �
E (s) and

return r, in UT [K].

declare r,p:idx ;

declare k:lvl ;

1. p(1;

2. for k = 1 to K do

3. r (NewNode(k); hk:ri[s[k]] (p;

4. Saturate(k; r); Check (k; r);

5. p(r; return r;

Saturate(in k:lvl , p:idx)

Update hk:pi, not in UT [k], in{place, to encode
N �
�k(B(hk:pi)).

declare e:evnt ;

declare L:set of lcl ;

declare f ,u:idx ;

declare i,j:lcl ;

declare pCng :bool ;

1. repeat

2. pCng (false;

3. foreach e 2 Ek do

4. L (Locals(e; k; p);

5. while L 6= ; do

6. i(Pick(L);

7. f (RecFire(e; k�1; hk:pi[i]);

8. if f 6= 0 then

9. foreach j 2 N k
e (i) do

10. u(Union(k�1; f; hk:pi[j]);

11. if u 6=hk:pi[j] then

12. hk:pi[j](u; pCng(true ;

13. if N k
e (j) 6= ; then

14. L (L[fjg;

15. until pCng = false;

Union(in k:lvl , p:idx , q:idx):idx

Build an MDD rooted at hk:si, in UT [k], encoding
B(hk:pi) [B(hk:qi). Return s.

declare i:lcl ;

declare s,u:idx ;

1. if p = 1 or q = 1 then return 1;

2. if p = 0 or p = q then return q;

3. if q = 0 then return p;

4. ifFind(UC[k]; fp; qg; s) then return s;

5. s(NewNode(k);

6. for i = 0 to nk�1 do

7. u(Union(k�1; hk:pi[i]; hk:qi[i]);

8. hk:si[i] (u;

9. Check(k; s); Insert(UC[k]; fp; qg; s);

10. return s;

RecFire(in e:evnt , l:lvl , q:idx):idx

Build an MDD rooted at hl:si, in UT [l], encoding
N �
�l(Ne(B(hl:qi))). Return s.

declare L:set of lcl ;

declare f ,u,s:idx ;

declare i,j:lcl ;

declare sCng :bool ;

1. if l < Last(e) then return q;

2. if Find(FC[l]; fq; eg; s) then return s;

3. s(NewNode(l); sCng (false;

4. L (Locals(e; l; q);

5. while L 6= ; do

6. i(Pick(L);

7. f (RecFire(e; l�1; hl:qi[i]);

8. if f 6= 0 then

9. foreach j 2 N l

e(i) do

10. u(Union(l�1; f; hl:si[j]);

11. if u 6=hl:si[j] then

12. hl:si[j] (u; sCng (true;

13. if sCng then Saturate(l; s);

14. Check(l; s); Insert(FC[l]; fq; eg; s);

15. return s;

Find(in tab, key , out v):bool

If (key ; x) is in hash table tab, set v to x and return
true . Else, return false.

Insert(inout tab, in key , v)

Insert (key ; v) in hash table tab, if it does not contain
an entry (key ; �).

Locals(in e:evnt , k:lvl , p:idx):set of lcl

Ret. fi2Sk:hk:pi[i] 6=0; N k
e (i) 6=;g, the local states in

p locally enabling e. Return ; or fi 2 Sk : N k
e (i) 6= ;g,

respectively, if p is 0 or 1.

Pick(inout L:set of lcl):lcl

Remove and return an element from L.

NewNode(in k:lvl):idx

Create hk:pi with arcs set to 0, return p.

Check(in k:lvl , inout p:idx)

If hk:pi, not in UT [k], duplicates hk:qi, in UT [k], delete
hk:pi and set p to q. Else, insert hk:pi in UT [k]. If
hk:pi[0] = � � � = hk:pi[nk�1] = 0 or 1, delete hk:pi
and set p to 0 or 1, since B(hk:pi) is ; or Sk�� � ��S1,
respectively.

Fig. 3.1. Pseudo{code for the node{saturation algorithm.

6

value is f = q and N l
e(U) = U for any set U ; since q is saturated, B(hl:qi) = N �

�l(B(hl:qi)) =

N �
�l(Ne(B(hl:qi))). If l � Last(e) but RecFire has been called previously with the same pa-

rameters, then the call Find(FC [l]; fq; eg; s) is successful. Since node q is saturated and in the

unique table, it has not been modi�ed further; note that in{place updates are performed only

on nodes not yet in the unique table. Thus, the value s in the cache is still valid and can be

safely used. Finally, we need to consider the case where the call RecFire(e; l; q) performs \real

work." First, a new node hl:si is created, having all its arcs initialized to 0. We explore the �ring

of e in each state i satisfying hl:qi[i] 6= 0 and N e
l (i) 6= ;. By induction hypothesis, the recursive

call RecFire(e; l�1; hl:qi[i]) returns N �
�l�1(Ne(B(hl�1:hl:qi[i]i))). Hence, when the \while L 6= ;"

loop terminates, B(hl:si) =
S
i2Sl N

l
e(i)�N

�
�l�1(Ne(B(hl�1:hl:qi[i]i))) = N �

�l�1(Ne(B(hl:qi))) holds.

Thus, all children of node hl:si are saturated. According to the induction hypothesis, the call

Saturate(l; s) correctly saturates hl:si. Consequently, we have B(hl:si) = N �
�l(N

�
�l�1(Ne(B(hl:qi))) =

N �
�l(Ne(B(hl:qi))) after the call.

(ii) As in the base case, Saturate(k; p) repeatedly explores the �ring of each event e that is locally

enabled in i 2 Sk, by calling RecFire(e; k�1; hk:pi[i]) which, as shown above and since l = k � 1,

returns N �
�k�1(Ne(B(hk�1:hk:pi[i]i))). Further, Saturate(k; p) terminates when �ring the events

in Ek = fe1; e2; : : : ; emg does not add any new state to B(hk:pi). At this point, the set Y encoded

by hk:pi is the �xed{point of the iteration

Y(m+1)(Y(m) [N �
�k�1(Ne1 (N

�
�k�1(Ne2 (� � � N

�
�k�1(Nem(Y

(m))) � � �))));

initialized with Y(0)(X [21]. Hence, Y = N �
�k(X), as desired.

This completes the correctness proof of the algorithm.

Figure 3.2 illustrates our saturation{based state{space generation algorithm on a small example, where

K = 3, jS3j = 2, jS2j = 3, and jS1j = 3. The initial state is (0; 0; 0), and there are three local events l1, l2,

and l3, plus two further events, e21 (depending on levels 2 and 1) and e321 (depending on all levels). Their

e�ects, i.e., their next{state functions, are summarized in the table at the top of Figure 3.2; the symbol \�"

indicates that a level does not a�ect an event. The MDD encoding f(0; 0; 0)g is displayed in Snapshot (a).

Nodes h3:2i and h2:2i are actually created in Steps (b) and (g), respectively, but we show them from the

beginning for clarity. The level lvl of a node hlvl :idx i is given at the very left of the MDD �gures, whereas

the index idx is shown to the right of each node. We use dashed lines for newly created objects, double

boxes for saturated nodes, and shaded local states for substates enabling the event to be �red. We do not

show nodes with index 0 nor any arcs to them.

� Snapshots (a{b): The call Saturate(1; 2) updates node h1:2i to represent the e�ect of �ring l�1; the

result is equal to the reserved node h1:1i.

� Snapshots (b{f): The call Saturate(2; 2) �res event l2, adding arc h2:2i[1] to h1:1i (cf. Snapshot (c)).

It also �res event e21 which �nds the \enabling pattern" (�; 0; 1), with arbitrary �rst component,

and starts building the result of the �ring, through the sequence of calls RecFire(e21; 1; h2:2i[0]) and

RecFire(e21; 0; h1:1i[1]). Once node h1:3i is created and its arc h1:3i[0] is set to 1 (cf. Snapshot (d)),

it is saturated by repeatedly �ring event l1. Node h1:3i then becomes identical to node h1:1i (cf.

Snapshot (e)). Hence, it is not added to the unique table but deleted. Returning from RecFire on

level 1 with result h1:1i, arc h2:2i[1] is updated to point to the outcome of the �ring (cf. Snapshot (f)).

This does not add any new state to the MDD, since the state set S3�f1g�f0g was already encoded

in B(h2:2i).

7

level event: l1 event: l2 event: l3 event: e21 event: e321

3

2

1

�

�

0! 1; 1! 2; 2! 0

�

0 ! 1; 2 ! 1

�

1 ! 0

�

�

�

0 ! 1

1 ! 0

0 ! 1

0 ! 2

0 ! 1

0 1

0 1 2

0 1 2

0 1

0 1 2

0 1

0 1 2

0 1

0 1 2

0 1 2

0 1

0 1 2

0 1 2

0 1

0 1 2

0 1 2

0 1

0 1 2

0 1 2

0 1

0 1 2

0 1 2

0 1

0 1 2

0 1 2

0 1

0 1 2 0 1 2

0 1 2

0 1

0 1 2 0 1 2

0 1 2

0 1

0 1 2 0 1 2

0 1 2

0 1 2 0 1 2210

0 1 2

0 1 2 0 1 2210

0 1 2

0 1 2 0 1 2

1 1 1 1 1 1

1 1

1

1 1 1

1 1 1

2

2

2 2

2

2

2

2

2

22

2

0 1

2

4 0 1 2

2 2

2 0 1 2 0 1 0 1

0 1 2

(c)

(g) (h) (i) (j)

(l)

1 1 31 1 3

2

1

2

1

2

2

1 4

2

2

1

3 2 3

1

2 3

1

1 2 3

1

2 3

1

2

1 2 3

1

1 3

1

(k)

(m)

(e)(d)(b)(a) (f)

(n) (o)

0 1 2 0 1 2

0 2

0 1 21 20

2

1

2

3

2

1

0

3

2

1

0

3

2

1

0

Fig. 3.2. Example of the execution of the Saturate and RecFire routines.

� Snapshots (f{o): Once h2:2i is saturated, we call Saturate(3; 2). Local event l3 is not enabled, but

event e321 is, by the pattern (0; 0; 0). The calls to RecFire build a chain of nodes encoding the

result of the �ring (cf. Snapshots (g{i)). Each of them is in turn saturated (cf. Snapshots (h{j)),

causing �rst the newly created node h1:4i to be deleted, since it becomes equal to node h1:1i, and

second the saturated node h2:3i to be added to the MDD. The �ring of e321 (cf. Snapshot (k)) not

only adds state (1; 2; 1), but the entire subspace f1g � f1; 2g � S1, now known to be exhaustively

explored, as node h2:3i is marked saturated. Event l3, which was found disabled in node h3:2i at

the �rst attempt, is now enabled, and its �ring calls Union(2; h3:2i[1]; h3:2i[0]). The result is a new

node which is found by Check to be the reserved node h2:1i (cf. Snapshot (m)). This node encoding

S2 � S1 is added as the descendant of node h3:2i in position 0, and the former descendant h2:2i in

that position is removed (cf. Snapshot (n)), causing it to become disconnected and deleted. Further

attempts to �re events l3 or e321 add no more states to the MDD, whence node h3:2i is declared

saturated (cf. Snapshot (o)). Thus, our algorithm terminates and returns the overall state space

(f0g � S2 � S1) [(f1g � f1; 2g� S1).

To summarize, since MDD nodes are saturated as soon as they are created, each node will either be present in

the �nal diagram or will eventually become disconnected, but never be modi�ed. This reduces the amount

of work needed to explore subspaces. Once all events in Ek are exhaustively �red in some node hk:pi,

any further state discovered that uses hk:pi for its encoding bene�ts in advance from the \knowledge"

encapsulated in hk:pi and its descendants.

8

4. Garbage Collection, Optimizations, and Generalizations. Before evaluating our saturation al-

gorithm by means of experimental studies, we brie
y discuss some implementation details regarding garbage{

collection policies, mention two optimizations noticeably a�ecting the algorithm's performance, and remark

on extending the algorithm to deal with multiple initial system states.

4.1. Garbage Collection. MDD nodes can become disconnected, i.e., unreachable from the root, and

should be \recycled." Disconnection is detected by associating an incoming{arc counter to each node hk:pi

such that hk:pi is disconnected if and only if its counter is zero. Recycling disconnected nodes is a major issue

in traditional symbolic state{space generation algorithms, where usually many nodes become disconnected.

In our algorithm, this phenomenon is much less frequent, and the best runtime is achieved by removing these

nodes only at the end; we refer to this policy as Lazy policy.

We also implemented a Strict policy where, if a node hk:pi becomes disconnected, its \delete{
ag" is

set and its arcs hk:pi[i] are re{directed to hk�1:0i, with possible recursive e�ects on the nodes downstream.

When a hit in the union cache UC [k] or the �ring cache FC [k] returns s, we consider this entry stale if

the delete{
ag of node hk:si is set. By keeping a per{level count of the nodes with delete{
ag set, we can

decide in routine NewNode(k) whether (a) to allocate new memory for a node at level k or (b) to recycle

the indexes and the physical memory of all nodes at level k with delete{
ag set, after having removed all

the entries in UC [k] and FC [k] referring to them. The threshold that triggers recycling can be set in terms

of numbers of nodes or bytes of memory. The policy using a threshold of one node, denoted as Strict(1),

is optimal in terms of memory consumption, but has a higher overhead due to frequent clean{ups.

4.2. Optimizations. In our implementation we employ several optimizations. For example, the two

outermost loops in Saturate ensure that �ring any event e 2 Ek adds no new states. However, if we always

consider these events in the same order, we can stop iterating as soon as jEk j consecutive events have been

explored without revealing any new state. This saves jEkj=2 �ring attempts on average, which translates to

speed{ups of up to 25% in our experimental studies. Also, in Union, the call Insert(UC[k]; fp; qg; s) records

that B(hk:si) = B(hk:pi)[B(hk:qi). Since this implies B(hk:si) = B(hk:pi)[B(hk:si) and B(hk:si) = B(hk:si)[

B(hk:qi), we can, optionally, also issue the calls Insert(UC[k]; fp; sg; s), if s 6= p, and Insert(UC[k]; fq; sg; s),

if s 6= q. This speculative union heuristic improves performance up to 20%.

4.3. Generalizations. So far we only discussed state{space generation starting from an MDD encoding

a single initial system state. We also implemented an extended version of our algorithm that can compute

N �(B(hK:ri)) for any arbitrary MDD rooted at node hK:ri. This is of importance for adapting our ideas

to model checking [16]. The necessary technical details underlying this issue are quite straightforward and,

thus, are omitted here.

5. Experimental Results. In this section we compare the performance of our new algorithm, using

both the Strict and Lazy policies, with previous MDD{based ones, namely the traditional Recursive

MDD approach in [30] and the level{by{level Forwarding{arcs approach in [11]. All three approaches

are implemented in SMART [12], a tool for the logical and stochastic{timing analysis of discrete{state

systems. For asynchronous systems, these approaches greatly outperform the more traditional BDD{based

approaches [28], where next{state functions are encoded using decision diagrams. To evaluate our saturation

algorithm, we have chosen a suite of examples with a wide range of characteristics. In all cases, the state

space sizes depend on a parameter N 2 N.

9

...

tbuf

tbuf

R
full

send

load

tload’

tasktbuf

task

task

R

R

R

tbuf
empty

tsend

tsend’

ask

task

ok
tload
tsend

tsend’

tload’

n

i

1

0

tloadi

i

i

i

i

i

i

i
i

i

i

i

i

i−1

i−1
nn

0

0

11

waiti

Idlei

WaitLefti WaitRighti

HasLefti

Forki

HasRighti

Fork(i+1) mod N

GoEati

GetLefti GetRighti

Releasei

tP3

P3sP3M2

N

3

2

N

1

N

P1

M1

tP1

P1wM1 P1M1 P1d P1s

P1wP2

P2wP1

P2s

P2dP2M2P2wM2

P2

M2

M3

P12P12wM3P12M3P12s

tM1 tP1M1
tP1e

tP1j

tP1s

tx

tP12tM3tP12M3

tP12s

tP2 tM2
tP2M2 tP2e

tP2j

tP2s

tP3stP3M2

P3

Free(i+1) mod N

Used(i+1) mod N

Otheri

Owneri

GoOni

Writei

Geti

Puti

Freei

Usedi

Fig. 5.1. Petri nets used in our experiments: round{robin mutex protocol (upper left), dining philosophers (upper right),

FMS (lower left), and slotted-ring (lower right).

� The classic N queens problem requires to �nd a way to position N queens on a N �N chess board

such that they do not attack each other. Since there will be exactly one queen per row in the �nal

solution, we use a safe (i.e., at most one token per place) Petri net model with N �N transitions

and N rows, one per MDD level, of N +1 places. For 1 � i; j � N , place pij is initially empty, and

place pi0 contains the token (queen) still to be placed on row i of the chess board. Transition tij

moves the queen from place pi0 to place pij , in competition with all other transitions til, for l 6= j.

To encode the mutual exclusion of queens on the same column or diagonal, we employ inhibitor arcs.

A correct placement of the N queens corresponds to a marking where all places pi0 are empty. Note

that our state space contains all reachable markings, including those where queens n to N still need

to be placed, for any n. In this model, locality is poor, since tij depends on levels 1 through i.

� The dining philosophers and slotted ring models [11, 33] are obtained by connecting N identical safe

subnets \in a circle." The MDD has N=2 MDD levels (two subnets per level) for the former model

and N levels (one subnet per level) for the latter. Events are either local or synchronize adjacent

subnets, thus they span only two levels, except for those synchronizing subnet N with subnet 1.

� The round{robin mutex protocol model [23] also has N identical safe subnets placed in a circular

fashion, which represent N processes, each mapped to one MDD level. Another subnet models a

resource shared by the N processes, giving raise to one more level, at the bottom of the MDD. There

are no local events and, in addition to events synchronizing adjacent subnets, the model contains

events synchronizing levels n and 1, for 2 � n � N + 1.

10

� The
exible manufacturing system (FMS) model [30] has a �xed shape, but is parameterized by the

initial number N of tokens in some places. We partition this model into 19 subnets, giving rise to a

19{level MDD with a moderate degree of locality, as events span from two to six levels.

The Petri nets for these systems, except for the queens problem, are depicted in Figure 5.1.

Figure 5.2 compares three variants of our new algorithm, using the Lazy policy or the Strict policy

with thresholds of 1 or 100 nodes per level, respectively, against the Recursive algorithm in [30] and the

Forwarding algorithm in [11]. We ran SMART on a 800 MHz Intel Pentium III PC under Linux. On the

left of Figure 5.2, we give the size of the state space for each model and the value of N . The graphs in the

middle and right columns show the peak and �nal numbers of MDD nodes and the CPU time in seconds

required for the state{space generations, respectively.

For the models introduced above, our new approach is up to two orders of magnitude faster than [30]

(a speed{up factor of 384 is obtained for the 1000 dining philosophers' model), and up to one order of

magnitude faster than [11] (a speed{up factor of 38 is achieved for the slotted ring model with 50 slots).

These results are observed for the Lazy variant of the algorithm, which yields the best runtimes; the Strict

policy also outperforms [30] and [11]. Furthermore, the gap keeps increasing as we scale up the models. Just

as important, the saturation algorithm tends to use many fewer MDD nodes, whence less memory. This is

most apparent in the FMS model, where the di�erence between the peak and the �nal number of nodes is

just a constant, 10, for any Strict policy. Also notable is the reduced memory consumption for the slotted

ring model, where the Strict(1) policy uses 23 times fewer nodes compared to [30], for N = 50. In terms

of absolute memory requirements, the number of nodes is essentially proportional to bytes of memory. For

reference, the largest memory consumption in our experiments was recorded with 9:7MB for the FMS model

with 100 tokens; auxiliary data structures required up to 2:5MB for encoding the next{state functions and

200KB for storing the local state spaces, while the caches used less than 1MB. Other SMART structures

account for another 4MB.

In a nutshell, with respect to generation time, the best algorithm is Lazy, followed by Strict(100),

Strict(1), Forwarding, and Recursive. According to memory consumption, the best algorithm is

Strict(1), followed by Strict(100), Lazy, Forwarding, and Recursive. Thus, our new algorithm

is consistently faster and uses less memory than previously proposed approaches. The worst model for all

algorithms is the queens problem, which has a very large number of nodes in the �nal representation of S

and little locality. Even here, however, our algorithm uses slightly fewer nodes and is substantially faster.

Finally, we observe that, when the Lazy and Strict policies di�er widely in terms of memory consumption

and CPU time, the choice of threshold for the Strict policy lets us trade{o� time vs. space e�ciency.

Hence, exploiting the locality inherent in asynchronous systems and employing a clever strategy for

iterating their local next{state functions, is the key to e�ciency for symbolic state{space generators.

6. Related Work. We already pointed out the signi�cant di�erences of our approach to symbolic

state{space generation when compared to traditional approaches reported in the literature [28], which are

usually deployed for model checking [14]. Hence, for comparing our algorithm to this work fairly, it needs to

be extended to a full model checker �rst, which is currently being investigated. The following sections brie
y

survey some orthogonal and alternative approaches to improving the scalability of state{space generation

and model{checking techniques. These approaches can be classi�ed according to whether state spaces are

represented either explicitly or symbolically.

11

Model& size Peak & �nal MDD nodes Generation time (sec.)

Queens

N S

6 1:53�102

7 5:52�102

8 2:06�103

9 8:39�103

10 3:55�104

11 1:67�105
0

10000

20000

30000

40000

50000

60000

70000

6 7 8 9 10 11

lazy
strict(1)

strict(100)
forwarding

recursive
final

0.01

0.1

1

10

100

1000

6 7 8 9 10 11

lazy
strict(1)

strict(100)
forwarding

recursive

Dining phil.

N S

100 4:97�1062

200 2:47�10125

400 6:10�10250

600 1:51�10376

800 3:72�10501

1000 9:18�10626
0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000
0.01

0.1

1

10

100

1000

200 400 600 800 1000

Slotted ring

N S

10 8:29�109

20 2:73�1020

30 1:04�1031

40 4:16�1041

50 1:72�1052 0

10000

20000

30000

40000

50000

60000

70000

80000

10 15 20 25 30 35 40 45 50
0.1

1

10

100

1000

10000

10 15 20 25 30 35 40 45 50

Round robin

N S

10 2:30�104

25 1:89�109

50 1:27�1017

100 2:85�1032

150 4:82�1047

200 7:23�1062
0

5000
10000
15000
20000
25000
30000
35000
40000
45000

10 50 100 150 200
0.01

0.1

1

10

100

1000

10 50 100 150 200

FMS

N S

5 2:90�106

10 2:50�109

25 8:54�1013

50 4:24�1017

75 6:98�1019

100 2:70�1021
0

10000

20000

30000

40000

50000

60000

10 20 30 40 50 60 70 80 90 100
0.01

0.1

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

Fig. 5.2. State space sizes, memory consumption, and generation times (logscale). Note: The curves in the upper left

diagram are almost identical and, thus, appear to coincide.

12

6.1. Explicit State{space Generation. Explicit techniques represent state spaces by trees, hash

tables, or graphs, where each state corresponds to an entity of the underlying data structure. Thus, the

memory needed to store the state space of a system is linear in the number of the system's states. To

achieve space e�ciency, numerous techniques have been introduced, including multi{level data structures [13]

and merging common bitvectors [24]. To avoid state{space explosion for asynchronous system models,

researchers often employ compositional construction techniques based on context constraints [23, 26], partial-

order techniques [22], or symmetry reduction [15].

6.2. Symbolic State{space Generation. Regarding synchronous hardware systems, symbolic tech-

niques using BDDs, which can represent state spaces in sublinear space, have been thoroughly investi-

gated [17]. Several implementations of BDDs are available. We refer the reader to [36] for a good survey on

BDD packages and their performance. To improve the time e�ciency of BDD{based algorithms, breadth{

�rst BDD{manipulation algorithms [4] have been explored and compared against the traditional depth{�rst

ones. However, the results show no signi�cant speed{ups, although breadth{�rst algorithms lead to more

regular access patterns of hash tables and caches. Regarding space e�ciency, a fair amount of work has

concentrated on choosing appropriate variable orderings and on dynamically re{ordering variables [20].

For asynchronous software systems, symbolic techniques have been investigated less, and mostly only in

the setting of Petri nets. For safe Petri nets, BDD-based algorithms for the generation of the reachability

set have been developed in [33, 35] via encoding each place of a net as a Boolean variable. These algorithms

are capable of generating state spaces of large nets within hours. Recently, more e�cient encodings of nets

have been introduced, which take place invariants [32] into account, although the underlying logic is still

based on Boolean variables. In contrast, our work uses a more general version of decision diagrams, namely

MDDs [25, 30], where more complex information is carried in each node of a diagram. In particular, MDDs

allow for a natural encoding of asynchronous system models, such as distributed embedded systems.

For the sake of completeness, we brie
y mention some other BDD{based techniques exploiting the

component{based structure of many digital systems. They include partial model checking [3], compositional

model checking [27], partial{order reduction [2], and conjunctive decompositions [29]. Finally, also note that

approaches to symbolic veri�cation have been developed, which do not rely on decision diagrams but instead

on arithmetic or algebra [1, 6, 34].

7. Conclusions and Future Work. We presented a novel approach for constructing the state spaces

of asynchronous system models using MDDs. By avoiding to encode a given global next{state function as

an MDD, but splitting it into several local next{state functions instead, we gained the freedom to choose the

sequence of event �rings, which controls the �xed{point iteration resulting in the desired global state space.

Our central contribution is the development of a speci�c elegant iteration strategy based on saturating MDD

nodes. Its utility is proved by experimental studies which show that our algorithm often performs several

orders of magnitude faster than most existing algorithms. Equally important, the peak sizes of MDDs are

usually kept close to their �nal sizes.

Regarding future work, we plan to employ our idea of saturation for implementing an MDD{based CTL

model checker within SMART [12], to compare the model checker to state{of{the{art BDD{based model

checkers, and to test our tool on examples that are extracted from real software. Moreover, we intend to

investigate whether our new algorithm is suitable for parallelization.

13

REFERENCES

[1] P. A. Abdulla, P. Bjesse, and N. E�en, Symbolic reachability analysis based on SAT-solvers, in

6th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2000), S. Graf and M. Schwartzbach, eds., Vol. 1785 of Lecture Notes in Computer Science,

Berlin, Germany, March/April 2000, Springer-Verlag, pp. 411{425.

[2] R. Alur, R. Brayton, T. Henzinger, S. Qadeer, and S. Rajamani, Partial-order reduction in

symbolic state-space exploration, in 9th International Conference on Computer-Aided Veri�cation

(CAV '97), O. Grumberg, ed., Vol. 1254 of Lecture Notes in Computer Science, Hai�, Israel, June

1997, Springer-Verlag, pp. 340{351.

[3] H. Andersen, J. Staunstrup, and N. Maretti, Partial model checking with ROBDDs, in Brinksma

[7], pp. 35{49.

[4] P. Ashar and M. Cheong, E�cient breadth{�rst manipulation of binary decision diagrams, in IEEE

International Conference on Computer Aided Design (ICCAD '94), San Jose, CA, USA, November

1994, Computer Society Press, pp. 622{627.

[5] J. Bergstra, A. Ponse, and S. Smolka, Handbook of Process Algebra, Elsevier Science, 2000.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking without BDDs, in 5th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS '99), R. Cleaveland, ed., Vol. 1579 of Lecture Notes in Computer Science, Amsterdam,

The Netherlands, April 1999, Springer-Verlag, pp. 193{207.

[7] E. Brinksma, ed., 3rd International Workshop on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS '97), Vol. 1217 of Lecture Notes in Computer Science, Enschede, The

Netherlands, April 1997, Springer-Verlag.

[8] R. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Com-

puters, 35 (1986), pp. 677{691.

[9] , Symbolic Boolean manipulation with ordered binary-decision diagrams, ACM Computing Surveys,

24 (1992), pp. 393{418.

[10] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, Symbolic model checking: 1020

states and beyond, Information and Computation, 98 (1992), pp. 142{170.

[11] G. Ciardo, G. L�uttgen, and R. Siminiceanu, E�cient symbolic state{space construction for

asynchronous systems, in 21st International Conference on Application and Theory of Petri Nets

(ICATPN 2000), M. Nielsen and D. Simpson, eds., Vol. 1639 of Lecture Notes in Computer Science,

Aarhus, Denmark, June 2000, Springer-Verlag, pp. 103{122.

[12] G. Ciardo and A. Miner, SMART: Simulation and Markovian Analyzer for Reliability and Timing,

in IEEE International Computer Performance and Dependability Symposium (IPDS '96), Urbana{

Champaign, IL, USA, September 1996, Computer Society Press, p. 60.

[13] , Storage alternatives for large structured state spaces, in 9th International Conference on Modelling

Techniques and Tools for Computer Performance Evaluation (Tools '97), R. Marie, B. Plateau,

M. Calzarossa, and G. Rubino, eds., Vol. 1245 of Lecture Notes in Computer Science, St. Malo,

France, June 1997, Springer-Verlag, pp. 44{57.

[14] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, NuSMV: A new symbolic model veri�er,

in 11th International Conference on Computer-Aided Veri�cation (CAV '99), N. Halbwachs and

D. Peled, eds., Vol. 1633 of LNCS, Trento, Italy, July 1999, Springer-Verlag, pp. 495{499.

14

[15] E. Clarke, T. Filkorn, and S. Jha, Exploiting symmetry in model checking, in 5th International

Workshop on Computer Aided Veri�cation (CAV '93), C. Courcoubetis, ed., Vol. 697 of Lecture

Notes in Computer Science, Elounda, Greece, June/July 1993, Springer-Verlag, pp. 450{462.

[16] E. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press, 1999.

[17] E. Clarke and J. Wing, Formal methods: State of the art and future directions, ACM Computing

Surveys, 28 (1996), pp. 626{643.

[18] R. Cleaveland, E. Madelaine, and S. Sims, Generating front-ends for veri�cation tools, in 1st

International Workshop on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS '95), E. Brinksma, W. Cleaveland, K. Larsen, T. Margaria, and B. Ste�en, eds., Vol. 1019

of Lecture Notes in Computer Science, Aarhus, Denmark, May 1995, Springer-Verlag, pp. 153{173.

[19] R. Cleaveland, J. Parrow, and B. Steffen, The Concurrency Workbench: A semantics-based

tool for the veri�cation of �nite-state systems, ACM Transactions on Programming Languages and

Systems, 15 (1993), pp. 36{72.

[20] M. Fujita, H. Fujisawa, and Y. Matsunaga, Variable ordering algorithms for ordered binary

decision diagrams and their evaluation, IEEE Transactions on Computer{Aided Design of Integrated

Circuits and Systems, 12 (1993), pp. 6{12.

[21] A. Geser, J. Knoop, G. L�uttgen, B. Steffen, and O. R�uthing, Chaotic �xed point iterations,

Tech. Report MIP-9403, University of Passau, Germany, October 1994.

[22] P. Godefroid, Partial-order Methods for the Veri�cation of Concurrent Systems, Vol. 1032 of Lecture

Notes in Computer Science, Springer-Verlag, 1996.

[23] S. Graf, B. Steffen, and G. L�uttgen, Compositional minimisation of �nite state systems using

interface speci�cations, Formal Aspects of Computing, 8 (1996), pp. 607{616.

[24] G. Holzmann, The model checker Spin, IEEE Transactions on Software Engineering, 23 (1997),

pp. 279{295.

[25] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, Multi{valued decision dia-

grams: Theory and applications, Multiple{Valued Logic, 4 (1998), pp. 9{62.

[26] J.-P. Krimm and L. Mounier, Compositional state space generation from Lotos programs, in Brinksma

[7], pp. 239{258.

[27] K. Larsen, P. Pettersson, and W. Yi, Compositional and symbolic model-checking of real-time

systems, in 16th IEEE Real-Time Systems Symposium (RTSS '95), Pisa, Italy, September 1995,

Computer Society Press, pp. 76{89.

[28] K. McMillan, Symbolic Model Checking: An Approach to the State-explosion Problem, Ph.D. thesis,

Carnegie-Mellon University, Pittsburgh, PA, USA, 1992.

[29] , A conjunctively decomposed Boolean representation for symbolic model checking, in 8th Inter-

national Conference on Computer-Aided Veri�cation (CAV '96), R. Alur and T. Henzinger, eds.,

Vol. 1102 of Lecture Notes in Computer Science, New Brunswick, NJ, USA, July 1996, Springer-

Verlag, pp. 13{24.

[30] A. Miner and G. Ciardo, E�cient reachability set generation and storage using decision diagrams,

in 20th International Conference on Application and Teory of Petri Nets (ICATPN '99), J. Kleijn

and S. Donatelli, eds., Vol. 1639 of Lecture Notes in Computer Science, Williamsburg, VA, USA,

June 1999, Springer-Verlag, pp. 6{25.

[31] T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE, 77 (1989),

pp. 541{579.

15

[32] E. Pastor and J. Cortadella, E�cient encoding schemes for symbolic analysis of Petri nets, in

IEEE Conference on Design, Automation and Test in Europe (DATE '98), Paris, France, March

1998, Computer Society Press, pp. 790{795.

[33] E. Pastor, O. Roig, J. Cortadella, and R. Badia, Petri net analysis using Boolean manipula-

tion, in 15th International Conference on the Application and Theory of Petri Nets (ICATPN '94),

R. Valette, ed., Vol. 815 of Lecture Notes in Computer Science, Zaragoza, Spain, June 1994, Springer-

Verlag, pp. 416{435.

[34] M. Sheeran and G. St�almarck, A tutorial on St�almarck's proof procedure for propositional logic,

Formal Methods in System Design, 16 (2000), pp. 23{58.

[35] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo, PROD reference manual, Tech.

Report B13, Helsinki University of Technology, Finland, August 1995.

[36] B. Yang, R. Bryant, D. O'Hallaron, A. Biere, O. Coudert, G. Janssen, R. Ranjan, and

F. Somenzi, A performance study of BDD{based model checking, in 2nd International Conference

on Formal Methods in Computer{Aided Design (FMCAD '98), G. Gopalakrishnan and P. Windley,

eds., Vol. 1522 of Lecture Notes in Computer Science, Palo Alto, CA, USA, November 1998, Springer-

Verlag, pp. 255{289.

16

